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ABSTRACT : The interpretability of Deep Neural Networks (DNNs) has become a critical focus in artificial 

intelligence and machine learning, particularly as DNNs are increasingly used in high-stakes applications like 

healthcare, finance, and autonomous driving. Interpretability refers to the extent to which humans can 

understand the reasons behind a model's decisions, which is essential for trust, accountability, and transparency. 

However, the complexity and depth of DNN architectures often compromise interpretability as these models 

function as "black boxes." This article reviews key architectural elements of DNNs that affect their 

interpretability, aiming to guide the design of more transparent and trustworthy models. The primary objective is 

to examine different layer types, network depth and complexity, connectivity patterns, and attention 

mechanisms to provide a comprehensive understanding of how these architectural components can enhance the 

interpretability of DNNs. Layer types, including convolutional, recurrent, and attention layers, have unique 

properties affecting model interpretability. Convolutional layers are fundamental for image recognition tasks, 

recurrent layers handle sequential data, and attention layers improve model performance by selectively focusing 

on relevant parts of the input. Network depth and complexity significantly impact interpretability, with shallow 

networks being more interpretable but less powerful on complex tasks compared to deep networks. Connectivity 

patterns also play a crucial role; while fully connected layers offer high flexibility, they pose interpretability 

challenges due to dense connections, whereas structured connectivity patterns like residual networks provide 

clearer information flow. Attention mechanisms further enhance interpretability by dynamically highlighting the 

most relevant parts of the input data. This review helps researchers and practitioners identify strategies to design 

DNNs that are both performant and interpretable, contributing to the advancement of trustworthy AI 

applications. 

 

KEYWORDS: Interpretability, Deep neural networks, Architectural elements, Trustworthy AI, Attention 
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I. INTRODUCTION 
The interpretability of Deep Neural Networks (DNNs) has emerged as a critical area of focus in the field of 

artificial intelligence (AI) and machine learning (ML) (Messud & Chambefort, 2020). Interpretability refers to 

the extent to which a human can understand the cause of a decision made by a model. As DNNs are increasingly 

employed in various high-stakes applications—such as healthcare, finance, and autonomous driving—the ability 

to interpret their outputs becomes essential for trust, accountability, and transparency (Eberle et al., 2021). 

These applications demand not only high performance from AI systems but also a clear understanding of the 

decision-making process to ensure reliability and ethical compliance. The complexity and depth of DNN 

architectures, characterized by multiple interconnected layers, often result in models functioning as "black 

boxes," where the rationale behind specific decisions is obscured. This opacity poses significant risks in critical 

fields, as incorrect or biased decisions can have severe consequences. 

 

In the context of healthcare, for instance, the deployment of DNNs for diagnostic purposes necessitates an 

interpretable model to facilitate trust among clinicians and patients. For example, the development and 

validation of interpretable neural networks for predicting postoperative in-hospital mortality have shown that 

leveraging neural networks' ability to learn nonlinear patterns, while maintaining interpretability, can 

significantly improve clinical outcomes (Lee et al., 2021). Similarly, interpretable models are essential in 

predicting patients' choices of hospital levels to manage healthcare resources efficiently and ensure appropriate 

patient care (Chen et al., 2021). In finance, understanding model decisions is crucial for regulatory compliance 

and risk management. Interpretability in DNNs helps in identifying the most influential factors in financial 

models, thereby ensuring transparent and accountable decision-making processes. For instance, models that 
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predict stroke occurrence using large-scale electronic medical claims data have demonstrated the necessity of 

interpretability to identify key predictors accurately and ensure model reliability (Hung et al., 

2017).Autonomous driving systems also require interpretability to ensure safety and accountability in case of 

accidents or system failures. DNNs used for real-time decision-making in autonomous vehicles must be 

interpretable to provide insights into the decision-making process and ensure that the vehicle's actions can be 

justified and understood by developers and regulators. Studies on cardiologist-level arrhythmia detection using 

DNNs have highlighted the importance of interpretability in validating and gaining trust in automated systems 

(Hannun et al., 2019). Hence, enhancing the interpretability of DNNs is not merely a technical challenge but a 

societal imperative. The ability to understand and trust these models is crucial for their adoption in critical 

fields, where the consequences of decisions can be life-altering. By focusing on architectural elements that 

improve interpretability, researchers and practitioners can develop more transparent and trustworthy AI systems, 

thereby fostering broader acceptance and ethical application of AI technologies. 

 

This article reviews the architectural elements of DNNs that influence their interpretability, providing insights 

into how these components can be designed to create more transparent and trustworthy models. It explores 

various types of layers, such as convolutional, recurrent, and attention layers, and their impact on model 

interpretability. The depth and complexity of the network, connectivity patterns, and the role of attention 

mechanisms are examined to understand how these factors contribute to or detract from interpretability. By 

identifying strategies to balance performance and transparency, this review aims to aid researchers and 

practitioners in developing DNNs that are not only effective but also interpretable, thus fostering broader 

acceptance and ethical application of AI technologies (Yu et al., 2016). 

 

DNN architecture, known for its complexity and depth, consists of multiple layers, each contributing to the 

model's ability to learn from data. However, this complexity often comes at the cost of interpretability. Unlike 

traditional machine learning models, whose decision-making processes are more transparent, DNNs operate as 

black boxes, making it challenging to understand how they arrive at specific decisions (Mouton & Davel, 2022). 

This lack of transparency raises concerns, particularly when DNNs are used in critical applications where 

understanding the reasoning behind decisions is paramount. For example, in healthcare, the deployment of 

DNNs for diagnostic purposes necessitates interpretable models to facilitate trust among clinicians and patients 

(Lee et al., 2021). Similarly, in finance, regulatory compliance and risk management require clear model 

explanations (Hung et al., 2017). In autonomous driving, interpretability is critical for ensuring safety and 

accountability (Hannun et al., 2019). 

 

The primary objective of this article is to review the architectural elements of DNNs that contribute to their 

interpretability. By examining different layer types, network depth and complexity, connectivity patterns, and 

attention mechanisms, the article aims to provide a comprehensive understanding of how these architectural 

components can be designed and utilized to enhance the interpretability of DNNs. This review will help 

researchers and practitioners identify strategies to make DNNs more transparent and trustworthy without 

compromising their performance (Yu et al., 2016). 

 

The article is structured into four sections, each focusing on a key architectural element of DNNs that influences 

interpretability: 

1. Layer Types: This section will explore various types of layers, including convolutional, recurrent, and 

attention layers, and their unique properties affecting model interpretability. Convolutional layers are 

fundamental for image recognition tasks, while recurrent layers handle sequential data, and attention layers 

improve model performance by selectively focusing on relevant parts of the input (Gandin et al., 2021). 

2. Network Depth and Complexity: This section will discuss how the depth and complexity of networks 

impact interpretability, highlighting the trade-offs between shallow and deep networks. Shallow networks 

are more interpretable but less powerful for complex tasks compared to deep networks, which offer greater 

accuracy but at the expense of transparency (Miyoshi et al., 2019). 

3. Connectivity Patterns: This section will examine how different connectivity patterns within the network, 

such as fully connected layers and structured connectivity like residual networks, influence interpretability. 

Fully connected layers provide high flexibility but pose interpretability challenges due to dense 

connections, whereas structured patterns like residual networks offer clearer information flow (Liu et al., 

2019). 

4. Attention Mechanisms: This section will analyze how attention mechanisms enhance interpretability by 

focusing on significant parts of the input data. Attention mechanisms dynamically highlight relevant input 

features, making the decision-making process of DNNs more transparent (Zheng et al., 2021).\ 
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Through the systematic examination of these architectural elements, the article aims to bridge the gap between 

high performance and interpretability in DNNs, ensuring that these powerful models can be used effectively and 

responsibly in critical applications. The increasing adoption of DNNs in fields such as healthcare, finance, and 

autonomous driving underscores the necessity for models that not only perform well but are also interpretable 

and transparent (Lee et al., 2021). By focusing on architectural elements such as layer types, network depth and 

complexity, connectivity patterns, and attention mechanisms, this article provides a framework for designing 

DNNs that are both high-performing and interpretable. This balance is crucial for the broader acceptance and 

ethical application of AI technologies across various fields. Researchers and practitioners can utilize the insights 

from this review to develop AI systems that are not only effective but also transparent and trustworthy, thereby 

addressing the critical need for interpretability in the deployment of AI in real-world applications (Yu et al., 

2016). 

 

Layer Types : Understanding the various layer types within DNNs is crucial for grasping how these models 

process and interpret data (Mouton & Davel, 2022). Each layer type—convolutional, recurrent, and attention—

plays a unique role in shaping the network's functionality and interpretability. Convolutional layers excel in 

image recognition by identifying spatial hierarchies of features, recurrent layers are adept at handling sequential 

data by capturing temporal dependencies, and attention layers enhance model performance by selectively 

focusing on the most relevant parts of the input. By examining these different layer types, one can gain insight 

into their respective properties and functions, as well as the interpretability challenges and techniques associated 

with each. This understanding is essential for developing more transparent and effective DNNs, ultimately 

contributing to the advancement of machine learning applications (Zhao & Gao, 2021). 

 

Convolutional Layers : Convolutional layers are fundamental components of convolutional neural networks 

(CNNs) and are particularly effective in image recognition tasks. These layers apply convolution operations to 

the input data, enabling the network to detect and learn spatial hierarchies of features through multiple layers of 

filters. Each filter is designed to identify specific patterns such as edges, textures, or more complex features as 

the data progresses through deeper layers (Jang et al., 2021). The interpretability of convolutional layers is 

primarily achieved through the visualization of learned filters and feature maps. By examining these 

visualizations, one can understand what features the network focuses on at different layers. For instance, the 

initial layers might capture basic edges and textures, while deeper layers identify more complex patterns and 

object parts. These visualizations help in demystifying the black-box nature of CNNs by providing insights into 

the feature extraction process and the hierarchical nature of learned representations (Gandin et al., 2021). 

 

Recurrent Layers : Recurrent layers, such as those found in recurrent neural networks (RNNs) and long short-

term memory networks (LSTMs), are designed to handle sequence data (Chaudhuri, 2019). These layers 

maintain a hidden state that captures information from previous time steps, making them suitable for tasks 

involving temporal dependencies, such as speech recognition, language modeling, and time-series prediction. 

Understanding the outputs of recurrent layers poses significant challenges due to their temporal dependencies 

and the complex interactions within the hidden states. However, techniques such as attention mechanisms and 

gradient-based methods can be employed to interpret recurrent layer outputs. These techniques help highlight 

which parts of the input sequence are most influential in the model's predictions, thus aiding in the 

interpretability of the model's sequential decision-making process (Bianchini & Scarselli, 2014). 

 

Attention Layers : Attention layers enhance the network's ability to focus on the most relevant parts of the 

input data. By assigning different weights to different input elements, attention mechanisms enable the model to 

prioritize significant features, thereby improving performance in tasks such as machine translation, text 

summarization, and image captioning (Zhao, 2021). The interpretability of models with attention layers is 

significantly improved through attention visualization. These visualizations depict the weights assigned to 

different input elements, providing a clear indication of which parts of the input the model considers most 

important for a given task. This not only enhances the transparency of the model's decision-making process but 

also allows for a better understanding of the underlying data relationships. Attention mechanisms, therefore, 

serve as powerful tools for both improving model performance and facilitating interpretability (Gandin et al., 

2021). 

 

Network Depth and Complexity : The depth and complexity of neural networks are crucial factors influencing 

both their performance and interpretability. As neural networks become deeper, with more layers and 

parameters, their ability to capture intricate patterns and relationships within data increases (Mouton & Davel, 

2022).  
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This capability is particularly beneficial for solving complex tasks that require a high degree of abstraction and 

generalization. However, the increased depth and complexity also introduce significant challenges in terms of 

understanding and interpreting the model's internal workings. Balancing the trade-off between achieving high 

performance and maintaining interpretability is a key concern in the design and application of deep neural 

networks (Yu et al., 2016); (Zhao & Gao, 2021). This section explores the properties and interpretability of both 

shallow and deep networks and discusses strategies for achieving an optimal balance between complexity and 

transparency. 

 

Shallow Networks : Shallow networks are characterized by having fewer layers and parameters. They are 

typically simpler in structure and easier to train compared to deeper networks. Due to their simplicity, shallow 

networks are generally easier to interpret. The limited number of layers and parameters allows for a more 

straightforward analysis of how inputs are transformed through the network. This simplicity aids in 

understanding the decision-making process of the model (Mouton & Gavel, 2022). Shallow networks are 

particularly useful in applications where interpretability is crucial, and the complexity of the task does not 

demand deep architectures. 

 

Deep Networks : Deep networks, on the other hand, consist of many layers, often resulting in increased depth 

and complexity. This architectural choice enables deep networks to capture and learn from intricate patterns 

within data, making them particularly effective for complex tasks. For instance, deep neural networks have 

shown remarkable performance in fields like image recognition, natural language processing, and medical 

diagnosis (Lee et al., 2021). The primary trade-off in deep networks lies between their high performance on 

complex tasks and their reduced interpretability. While deeper networks can achieve superior accuracy and 

generalization, understanding the internal workings of these models becomes increasingly challenging as 

complexity grows (Daniels et al., 2020). This opacity can hinder their adoption in critical fields where model 

transparency is essential for trust and accountability. 

 

Strategies for Balancing : To balance the depth of neural networks with the need for interpretability, several 

strategies can be employed. Techniques such as network pruning, which reduces the number of parameters 

while maintaining performance, can help simplify models. Additionally, employing visualization tools and 

techniques like layer-wise relevance propagation can provide insights into the decision-making process of 

deeper networks (Daniels et al., 2020). Another approach is using hybrid models that combine shallow 

interpretable layers with deeper, more complex structures, thereby leveraging the strengths of both architectures. 

These strategies aim to maintain the performance benefits of deep networks while enhancing their transparency 

and interpretability (Miyoshi et al., 2019). 

 

Connectivity Patterns : The way neurons are connected within a neural network significantly impacts the 

model's interpretability. Connectivity patterns determine how information flows through the network, 

influencing the complexity and transparency of the learning process (Zhang et al., 2021); (Naseer et al., 2023). 

While fully connected layers offer high flexibility, they often pose significant challenges for interpretability due 

to their dense connections. In contrast, structured connectivity patterns, such as those found in residual 

networks, can provide a clearer flow of information, enhancing the model's transparency. This section examines 

the properties and interpretability challenges of fully connected layers and explores the benefits of structured 

connectivity patterns, particularly residual networks. 

 

Fully Connected Layers : Fully connected layers, also known as dense layers, connect every neuron in one 

layer to every neuron in the next layer. This architecture offers high flexibility, allowing the network to learn 

complex representations by combining information from all previous layers (Zhang et al., 2021). However, the 

dense connections in fully connected layers make it challenging to understand the specific contributions of 

individual neurons and layers to the final output. This complexity complicates the interpretation of the model's 

decision-making process. As a result, fully connected layers often lack transparency, making it difficult for 

researchers and practitioners to gain insights into how the network arrives at its predictions. 

 

Structured Connectivity Patterns : Residual networks (ResNets) introduce a more structured connectivity 

pattern by incorporating shortcut connections that bypass one or more layers (Chitty-Venkata & Somani, 2022). 

These shortcut connections allow the network to directly propagate information from earlier layers to later 

layers, facilitating the learning process and improving model performance. The structured connectivity in 

residual networks provides a clearer flow of information, making it easier to trace the contributions of different 

layers to the final output.  
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This improved clarity helps in understanding how the network processes information and makes decisions, 

thereby enhancing interpretability.The use of residual connections also mitigates the problem of vanishing 

gradients, allowing for the training of deeper networks without compromising interpretability. By maintaining a 

direct path for gradient flow, ResNets ensure that the learning process remains efficient even as the network 

depth increases. This capability makes ResNets particularly suitable for applications requiring deep architectures 

while still retaining a degree of interpretability (Chitty-Venkata & Somani, 2022). Through the careful design 

and implementation of connectivity patterns, it is possible to achieve a balance between the performance 

benefits of deep neural networks and the need for interpretability. Researchers and practitioners can leverage 

these insights to develop models that are both powerful and transparent, thereby fostering trust and 

accountability in AI systems used in critical applications. 

 

Attention Mechanisms : Attention mechanisms have emerged as a pivotal architectural element in deep neural 

networks (DNNs), significantly enhancing their interpretability. By enabling the model to focus on the most 

relevant parts of the input data, attention mechanisms provide insights into which aspects of the input are most 

influential in the decision-making process. This section discusses the importance of attention mechanisms in 

DNNs, how they enhance interpretability, and their applications across various tasks. 

 

Importance in DNNs : Attention mechanisms play a crucial role in DNNs by dynamically highlighting the 

most relevant parts of the input data during the processing stages. This selective focus allows the network to 

prioritize important features while disregarding less significant ones, thereby improving the model's 

performance and making its behavior more understandable (Gandin et al., 2021). By assigning different weights 

to different parts of the input, attention mechanisms help to clarify the internal workings of complex models. 

This capability is essential in tasks where understanding the model’s focus can inform improvements in both the 

model and the data it processes (Zou & Ding, 2021). 

 

Interpretability Enhancement : One of the primary benefits of attention mechanisms is their ability to enhance 

interpretability through the visualization of attention weights. These weights reveal which parts of the input data 

the model is focusing on at any given time, providing a clear and intuitive understanding of the model's 

decision-making process (Daniels et al., 2020; Blautzik et al., 2013). By examining these visualizations, 

researchers and practitioners can gain valuable insights into the inner workings of the model, identifying which 

features are most influential and how they contribute to the final output. This transparency is particularly 

important in applications where the stakes are high, such as in medical diagnostics and financial forecasting. 

 

Applications : Attention mechanisms are widely applied across various tasks to aid interpretability. For 

instance, in natural language processing (NLP), attention mechanisms help models focus on relevant words or 

phrases in a sentence, improving the understanding of language structure and context. In image recognition, 

attention mechanisms highlight critical regions within an image, facilitating the identification of key features 

that drive classification decisions (Grigg & Grady, 2010; Tutek & Šnajder, 2022). These applications 

demonstrate how attention mechanisms not only enhance model performance but also provide a clearer 

understanding of how models process and interpret data. By making the decision-making process more 

transparent, attention mechanisms enable the development of more trustworthy and accountable AI systems. 

Through the use of attention mechanisms, DNNs can achieve a balance between high performance and 

interpretability, ensuring that these models can be effectively and responsibly deployed in real-world 

applications. 

II. DISCUSSION 
The architectural elements reviewed thus far contribute to the interpretability of DNNs, focusing on layer types, 

network depth and complexity, connectivity patterns, and attention mechanisms. Convolutional, recurrent, and 

attention layers each have unique properties that impact interpretability. Convolutional layers allow for 

visualization of learned filters, aiding in understanding feature extraction. Recurrent layers handle sequential 

data but present challenges in understanding temporal dependencies. Attention layers enhance interpretability by 

highlighting important parts of the input. Network depth and complexity influence interpretability, with shallow 

networks being more interpretable but less powerful on complex tasks compared to deep networks. Connectivity 

patterns, including fully connected layers and structured patterns like residual networks, also play a significant 

role. Fully connected layers offer high flexibility but are difficult to interpret, while structured connectivity 

patterns provide clearer information flow. Attention mechanisms, by focusing on relevant input parts, 

significantly enhance model interpretability. 
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Understanding the various layer types within DNNs is crucial for grasping how these models process and 

interpret data (Mouton & Davel, 2022). Each layer type—convolutional, recurrent, and attention—plays a 

unique role in shaping the network's functionality and interpretability. Convolutional layers excel in image 

recognition by identifying spatial hierarchies of features, recurrent layers are adept at handling sequential data 

by capturing temporal dependencies, and attention layers enhance model performance by selectively focusing on 

the most relevant parts of the input. By examining these different layer types, one can gain insight into their 

respective properties and functions, as well as the interpretability challenges and techniques associated with 

each (Zhao & Gao, 2021). 

 

The depth and complexity of neural networks are crucial factors influencing both their performance and 

interpretability. As neural networks become deeper, with more layers and parameters, their ability to capture 

intricate patterns and relationships within data increases (Mouton & Davel, 2022). This capability is particularly 

beneficial for solving complex tasks that require a high degree of abstraction and generalization. However, the 

increased depth and complexity also introduce significant challenges in terms of understanding and interpreting 

the model's internal workings. Balancing the trade-off between achieving high performance and maintaining 

interpretability is a key concern in the design and application of deep neural networks (Yu et al., 2016; Zhao & 

Gao, 2021). 

 

The way neurons are connected within a neural network significantly impacts the model's interpretability. 

Connectivity patterns determine how information flows through the network, influencing the complexity and 

transparency of the learning process (Naseer et al., 2023; Zhang et al., 2021). While fully connected layers offer 

high flexibility, they often pose significant challenges for interpretability due to their dense connections. In 

contrast, structured connectivity patterns, such as those found in residual networks, can provide a clearer flow of 

information, enhancing the model's transparency. This section examines the properties and interpretability 

challenges of fully connected layers and explores the benefits of structured connectivity patterns, particularly 

residual networks. 

 

Attention mechanisms have emerged as a pivotal architectural element in these networks, significantly 

enhancing their interpretability. By enabling the model to focus on the most relevant parts of the input data, 

attention mechanisms provide insights into which aspects of the input are most influential in the decision-

making process. This selective focus allows the network to prioritize important features while disregarding less 

significant ones, thereby improving the model's performance and making its behavior more understandable 

(Gandin et al., 2021). By assigning different weights to different parts of the input, attention mechanisms help to 

clarify the internal workings of complex models [(Zou & Ding, 2021). 

 

The review thus highlights the importance of architectural elements in enhancing the interpretability of deep 

neural networks. Convolutional layers, recurrent layers, and attention mechanisms each contribute uniquely to 

model transparency, while network depth and connectivity patterns significantly affect interpretability. Future 

research should focus on developing innovative techniques to balance the trade-off between performance and 

interpretability, ensuring that DNNs can be effectively and responsibly deployed in critical applications. By 

integrating interpretability-focused designs and leveraging advanced visualization tools, researchers can create 

more transparent, trustworthy, and efficient AI systems, ultimately contributing to the broader acceptance and 

ethical application of AI technologies. 

 

III. CONCLUSION 
Deep neural networks (DNNs) have revolutionized numerous fields by providing unprecedented performance in 

tasks such as image recognition, natural language processing, and medical diagnosis. However, their complexity 

and lack of interpretability pose significant challenges, particularly in high-stakes applications where 

understanding the reasoning behind decisions is paramount. This article reviewed the architectural elements that 

contribute to the interpretability of DNNs, focusing on layer types, network depth and complexity, connectivity 

patterns, and attention mechanisms. The need for this study is underscored by the increasing reliance on DNNs 

in critical domains such as healthcare, finance, and autonomous driving. In these areas, the opacity of DNN 

models can hinder their adoption due to concerns over trust, accountability, and transparency. Addressing these 

issues requires a comprehensive understanding of how different architectural components of DNNs affect their 

interpretability. Our review highlighted that convolutional layers allow for visualization of learned filters, aiding 

in understanding feature extraction processes (Jang et al., 2021). Recurrent layers handle sequential data but 

present challenges in understanding temporal dependencies (Bianchini & Scarselli, 2014). Attention layers 

significantly enhance interpretability by highlighting important parts of the input, providing insights into the 
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model’s focus (Gandin et al., 2021). Network depth and complexity influence interpretability, with shallow 

networks being more interpretable but less powerful for complex tasks compared to deep networks (Miyoshi et 

al., 2019). Connectivity patterns, including fully connected layers and structured patterns like residual networks, 

also play a significant role, with the latter providing clearer information flow (Chitty-Venkata & Somani, 2022). 

Future research should continue to explore ways to enhance the interpretability of DNNs without compromising 

their performance. Developing new visualization tools and techniques for different layer types can help 

demystify complex models (Lee et al., 2021). Additionally, investigating hybrid models that combine shallow 

and deep networks may offer a balance between performance and interpretability (Yu et al., 2016). Further 

research on the ethical implications of DNN interpretability, especially in high-stakes applications, is crucial. 

Interdisciplinary collaboration among computer scientists, ethicists, and domain experts will be essential to 

address the multifaceted challenges of making DNNs more transparent and accountable. Finally, the 

development of standardized benchmarks for evaluating interpretability across different architectures and 

applications will provide a clearer framework for assessing progress in this critical area. By advancing our 

understanding of DNN interpretability and developing innovative approaches to enhance it, we can ensure that 

these powerful models can be deployed responsibly and effectively, fostering broader acceptance and ethical 

application of AI technologies. 
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