
            International Journal of Multidisciplinary and Current  

Educational Research (IJMCER) 

ISSN: 2581-7027 ||Volume|| 1 ||Issue|| 3 ||Pages|| 01-05 ||2019|| 

|Volume 1| Issue 2 |                                            www.ijmcer.com Page 1 

 

An Effective Teaching Technical to Build a Homographic Recurring 

Sequence 
 

1ARMAND, 2André Totohasina, 3Daniel Rajaonasy FENO 
 

1Lycee Mixte Antsiranana Madagascar 
2Department of Mathematics and Informatics Application University of Antsiranana Madagascar 
3Department of Mathematics and Informatics Application University of Toamasina Madagascar 

 

Summary: Their age, their richness as well as the diversity of their fields of application make recurring series a so 

vast and so rich subject in results that it would take several works, in addition to those that already exist, to go 

around all their properties. In the literature, we mainly learn about linear recurrent sequences. But, this paper is 

interested in studding homographic recurring sequence. Apart from a reminder about the study of the convergence 

of a recurring homographic sequence, we set up two theorems allowing to build a homographic sequence whose 

limit is beforehand fixed. 
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I. INTRODUCTION 

In mathematics, a sequence is an ordered succession of elements taken in a given set; a series is the sum of the terms 

of a sequence (Nicolas, M. 2007). Sequence and series occupy a fundamental place in modern mathematics. The 

work of Abel, Cauchy and Gauss on convergence marked, in the early nineteenth century, the study of series. This 

one is not limited to series of real numbers, but also applies to complex numbers, or series of functions (Abdelkader, 

N. 1998). Series have applications in many scientific fields, like electronics (Hoggat, V. E.  1983), (Cerruti, U., and 

Vaccarino, F. 1996). There are several types of suites in the literature, namely for example following recurring, 

Cauchy sequence, Fibonacci sequence, geometric sequence, arithmetic sequence, etc. and each of these sequence has 

its reasons to be (Roland, C. 2005), (Ferrand, D. 1988), (Hansel, G.  1986), (S. Homer and J. Goldman, 1985). In 

this paper, we saoudite importance of both geometric and arithmetic sequence. Nobody is ignorant of the importance 

of geometric sequence and arithmetic sequence (Pourchet, Y.  1979), (Polosuev, A. M. 1986) in everyday life, and 

this, in several domains, namely, for example: bank, administration, medicine, bio-ecology, telecommunication, etc. 

In this regard, this paper proposes, among other things, a way allowing to obtain recurring sequence from 

homographic functions  (Michard, R. 2008) et (Mikhalev et al. 1995). In what follows, our work is divided into four 

sections. Section II introduces the definition of an arithmetic sequence and that of geometric. Section III suggests 

the direct problems of the homographic. Section IV proposes the inverse problems of homography. Section V poses 

a conclusion. 

 

II- REMINDERS AND DEFINITIONS 

In this section, we recall a little the definition of an arithmetic and geometric sequence. 

2.1.  Arithmetic sequence 

An arithmetic sequence is called a sequence of numbers where we go from one term to the next by adding always 

the same number (this number is called the reason for the arithmetic sequence and is often noted r) (A. M. Polosuev. 

1967), (J.-P. Bézivin. 1990), (M. Mignotte L. Cerlienco and F. 1987). 

2.2. Geometric sequence 

A geometric sequence is a numerical sequence whose term is obtained by multiplying previous by a nonzero 

constant real number q (it is a recursion definition). 

 

III- STUDY OF A RECURRENT SEQUENCE “ DIRECT PROBLEMS OF HOMOGRAPHY ” 

 

3.1.  Linear Recurrence Suite: Classical Problem (on the Student Side) 

Let (𝑈𝑛)𝑛∈𝐼𝑁 be the sequence defined by 𝑈0 = 1 and for all n: 𝑈𝑛+1 = 3𝑈𝑛 + 5. 
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 For all n, we set 𝑉𝑛 = 𝑈𝑛 −
5

2
 

a- Show that the sequence (𝑉𝑛) is a geometric sequence whose exact reason and his first term. 

b- Express (𝑉𝑛)𝑛∈𝐼𝑁 then (𝑈𝑛)𝑛∈𝐼𝑁  according to n 

c- Calculate the limit of the sequence (𝑉𝑛)𝑛∈𝐼𝑁   and deduce that (𝑈𝑛)𝑛∈𝐼𝑁 

 

3.2.  Homographic recurring sequence proper : classical problem (on the side of students) 

We want to study the convergent of a sequence  (𝑈𝑛)𝑛∈𝐼𝑁  expressed by the relation of recurrence 𝑈𝑛+1 = ℎ(𝑈𝑛) 
from the situations of the fixed points of an own homography h previously given. 

Let's start by exposing classical methods for the study of some recurrent sequences of order one. If a (𝑈𝑛)𝑛∈𝐼𝑁 

sequence is defined by recurrence by an expression of the type 𝑈𝑛+1 = ℎ(𝑈𝑛), where h is a homographic function 

defined by: ℎ(𝑥) =
𝑎𝑥+𝑏

𝑐𝑥+𝑑
 (c≠ 0 otherwise the study is trivial), then of two things one: 

 Let the function h admit two fixed points 𝛼 and 𝛽 in which case we study the term sequence general  𝑉𝑛 =
𝑈𝑛−𝛼

𝑈𝑛−𝛽
  and we quickly realize that (𝑉𝑛)𝑛∈𝐼𝑁  is a geometric sequence and we draw from it after the 

convergence of the sequence  (𝑈𝑛)𝑛∈𝐼𝑁. 

 Else, h has only one fixed point, in which case we study the following general term 𝑉𝑛 =
1

𝑈𝑛−𝛼
  which is 

then an arithmetic sequence; in this case, we can shoot immediately that lim
𝑛→∞

𝑈𝑛 = 𝛼. 

 

3.3.  Development of an auxiliary geometric sequence 

If a sequence  (𝑈𝑛)𝑛∈𝐼𝑁   is defined by recurrence by an expression of the type : 𝑈𝑛+1 = ℎ(𝑈𝑛)   with h a 

homography of the form 𝑥 ↦
𝑎𝑥+𝑏

𝑐𝑥+𝑑
 (c≠ 0 otherwise the study is trivial), then of both things one : either the function 

h has two fixed points and in which case we study the sequence of general term 𝑉𝑛 =
𝑈𝑛−𝛼

𝑈𝑛−𝛽
 , and we quickly realize 

that (𝑉𝑛)  is a geometric sequence of reason   𝑞 =
𝑎−𝑐𝛼

𝑎−𝑐𝛽
 and of first term 𝑉𝑝 such that 𝑉𝑝 =

𝑈𝑝−𝛼

𝑈𝑝−𝛽
  hence, the following 

proposition. 

 

Proposition 1. Given homography h having two fixed points and considering a homographic sequence  𝑈𝑛+1 =
ℎ(𝑈𝑛), then we have the 4 possible cases following the values of the reason of the auxiliary sequence (𝑉𝑛)  : 

(i) If  |q|> 1, then the sequence (𝑈𝑛)𝑛∈𝐼𝑁  converge to 𝛼 ; 

(ii) If  |q|< 1, then the sequence (𝑈𝑛)𝑛∈𝐼𝑁  converge to 𝛽 ; 

(iii) If |q| = 1, and the first term 𝑉𝑝 ≠ 1, then the sequence (𝑈𝑛)𝑛∈𝐼𝑁  converge to ±
𝛼−𝛽𝑉𝑝

1−𝑉𝑝
  ; 

(iv) Else, then the sequence (𝑈𝑛)𝑛∈𝐼𝑁 diverge. 

 

Proof 

(i) Let (𝑈𝑛)𝑛∈𝐼𝑁 be a sequence defined by : 𝑈𝑛+1 = ℎ(𝑈𝑛), such that there are two non-zero reals and verifying the 

equations h(𝛼)= 𝛼 and h(𝛽) =𝛽. Consider a suite 𝑉𝑛 =
𝑈𝑛−𝛼

𝑈𝑛−𝛽
. As, we have already said that (𝑉𝑛)𝑛∈𝐼𝑁  is a geometric 

sequence of reason 𝑞 =
𝑎−𝑐𝛼

𝑎−𝑐𝛽
 and of first term 𝑉𝑝 such that 𝑉𝑝 =

𝑈𝑝−𝛼

𝑈𝑝−𝛽
. We can deduce from this that the general term 

of the (𝑉𝑛)𝑛∈𝐼𝑁 sequence of first term Vp and of reason q is defined by: 𝑉𝑛 =
𝑈𝑛−𝛼

𝑈𝑛−𝛽
= 𝑞𝑛−𝑝𝑉𝑝 = (

𝑎−𝑐𝛼

𝑎−𝑐𝛽
)
𝑛−𝑝 𝑈𝑝−𝛼

𝑈𝑝−𝛽
 

We can indeed draw that, if |q| > 1, then: 

 

lim
𝑛→∞

𝑈𝑛−𝛼

𝑈𝑛−𝛽
= lim

𝑛→∞
(
𝑎−𝑐𝛼

𝑎−𝑐𝛽
)
𝑛−𝑝 𝑈𝑝−𝛼

𝑈𝑝−𝛽
= ∞                 (1) 

 

Which leads us to deduce that 𝑈𝑛 = 𝛽. It is indeed very easy to prove that, (ii), (iii) and (iv) results from (1). 

Example 1. Let us study the sequence defined by 𝑈0 = 1 and for all n: 𝑈𝑛+1 =
𝑈𝑛+3

2𝑈𝑛
. We start by looking for the 

fixed points of homography h: 𝑥 ↦
𝑥+3

2𝑥
. These are the roots of the equation x + 3 = x (2x), that is -1 and 3/2. We are 

therefore studying the following general term 
𝑈𝑛+1

𝑈𝑛−3/2
   and let's call it (𝑉𝑛). 

We have: 
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𝑉𝑛+1 =
𝑈𝑛+1 + 1

𝑈𝑛+1 − 3/2
=

𝑈𝑛 + 3
2𝑈𝑛

+ 1

𝑈𝑛 + 3
2𝑈𝑛

− 3/2
 

 

                                         = (−
3

2
)
𝑈𝑛 + 1

𝑈𝑛 − 3/2
 

 

                                                                                                = (−
3

2
) 𝑉𝑛. 

So, (𝑉𝑛)𝑛∈𝐼𝑁 is a geometric sequence of reason 𝑞 = −
3

2
 and of first term 𝑉0 = 4. 

 

3.4.  Convergence of a suite  (𝑼𝒏)𝒏∈𝑰𝑵 

By recurrence, we have immediately 
𝑈𝑛+1

𝑈𝑛−3/2
= (−3/2)𝑛

𝑈0+1

𝑈0−3/2
 and therefore lim

𝑛→∞
|
𝑈𝑛+1

𝑈𝑛−3/2
| = +∞ . Hence, 

lim
𝑛→+∞

𝑈𝑛 = 3/2. 

 

3.5.  Development of an auxiliary arithmetic suite 

As we have already shown that if h has only one fixed point, then the following general term 𝑉𝑛 =
1

𝑈𝑛−𝛼
   is then an 

arithmetic sequence of reason 𝑟 =
𝑐

𝑎−𝛼𝑐
 and first term 𝑉𝑝 =

1

𝑈𝑝−𝛼
. In this case, we can immediately draw that 

lim
𝑛→+∞

𝑈𝑛 = 𝛼.  

 

Example 2. We will study the sequence defined by 𝑈0 = 1  and for all n: 𝑈𝑛+1 =
10𝑈𝑛−25

𝑈𝑛
. We start by searching for 

the fixed points of the recursion function f: 𝑥 ↦
10𝑥−25

𝑥
. These are the roots of the equation 10x - 25 = x (x), that is 

to say 5. We therefore study the following auxiliary general term 
1

𝑈𝑛−5
   let's call it (𝑉𝑛)𝑛∈𝐼𝑁. 

We have:  

𝑉𝑛+1 =
1

𝑈𝑛+1 − 5
                =        

1

10𝑈𝑛 − 25
2𝑈𝑛

− 5
 

                                                                                                      =         (
1

5
)

𝑈𝑛

𝑈𝑛−5
 

                                                                       So, 𝑉𝑛+1 − 𝑉𝑛 =
1

5
. 

Hence, (𝑉𝑛)𝑛∈𝐼𝑁 is an arithmetic sequence of reason 𝑟 = 1/5 and first-term 𝑉0 = −
1

4
. 

 

3.6.  Convergence of the suite  (𝑼𝒏)𝒏∈𝑰𝑵                                                                     

It is immediately that lim
𝑛→+∞

𝑈𝑛 = 5. This method is certainly effective and it is put through the search of the fixed 

points of the homographic function which makes it possible to determine where the sequence defined by recurrence 

may tend, if it converges. She is too actually place expected to have a projective application that can make the 

infinite to a finite number. On the other hand, it is more surprising that this method gives us for sure the behavior of 

the suite. 

 

IV- INVERSE PROBLEMS 

 

4.1. Inverse problems of an affine application 

On the teacher's side, “how to construct one's own subject on linear sequences or arithmetico-geometric?”  It's about 

finding an affine application with a fixed point given. What will be used to build an arithmetic-geometric sequence 

that is used to teach to students of terminal or first as part of the study of geometric sequence. Hence the following 

theorem. 

 

Theorem 1. Search for an infinity of an affine application having 𝛼 fixed point given for any non-zero real, there is 

an infinity of affine applications noted ℎ𝛼 having 𝛼 as fixed point defined by: ℎ𝛼(𝑧) = 𝑎𝑧 + 𝑏   were 𝑎 ≠ 0 as, =
𝑎(1 − 𝛼)   ∀𝑎 ∈ ℝ∗  𝑤𝑖𝑡ℎ |𝑎| < 1 . 

 

Corollary 1. For every real fixed 𝛼, there is an infinity of arithmetic-geometric sequences that converge to 𝛼. We 

have now a method to build an arithmetico-geometric sequences converging toward  𝛼 with one degree of freedom. 
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Example 3. Construction of a homography with a fixed point 𝛼. Let two real 𝛼 = 3 and a = 1/4. The arithmetic-

geometric sequence generated by ℎ𝛼 is defined by: {
𝑈0 ≠ 3

 𝑈𝑛+1 = ℎ𝛼(𝑈𝑛)
 where, ℎ𝛼𝑧 =

1

4
𝑧 +

9

4
 as 𝑏 = 𝑎(1 − 𝛼) =

9

4
 is  

{

𝑈0 ≠ 3

∀𝑛 ∈ ℕ,𝑈𝑛+1 = ℎ𝛼(𝑈𝑛) =
1

4
𝑈𝑛 +

9

4
.
 

It is easy to verify that this arithmetic-geometric sequence converges to 3 as desired. 

 

4.2.  Inverse problems of proper homography 

This time, we propose to build a boundary homographic sequence fixed at will. This is a reverse problem of 

homography which consists in finding:  

 Let a complex or real homography h, which 𝛼 is precisely its only fixed point ; 

  Let a complex or real h homography at two fixed points of which 𝛼. 
Let's examine the two cases separately. 

 

4.3. A complex or real homography h of which is its only fixed point 

Theorem 2. For 𝛼 fixed non-zero real, there is an infinity of homographs marked ℎ𝛼 having as 𝛼 single fixed point 

defined by: 

 

ℎ𝛼 ∶  𝑧 ↦
𝑎𝑧+𝑏

𝑐𝑧+𝑑
  as  {

   𝑏 = −𝛼2𝑐
𝑎 = 4𝛼𝑐
𝑑 = 2𝛼𝑐

       ∀ (𝛼, 𝑐) ∈ (ℝ∗)2. 

Proof 

Let ℎ𝛼 be a homography defined by: ℎ𝛼(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
. We have an expression: ℎ𝛼𝑐(𝑧) =

4𝛼𝑧−𝛼2

𝑧+2𝛼
. Thus, ℎ𝛼(𝑧) = 𝑧 is 

equivalent to 4𝛼𝑐𝑧 − 𝛼2𝑐 = 𝑐𝑧2 + 2𝛼𝑐𝑧.  So, in replacing z by 𝛼  we have: 4𝛼2𝑐 − 𝛼2𝑐 = 𝑐𝛼2 + 2𝛼2𝑐  and we 

have: 3𝛼2𝑐 = 3𝑐𝛼2. 

 

Uniqueness   

We have: 𝑧2 + 2𝛼𝑧 + 𝛼2 = (𝑧 + 𝛼)2. We find that the discriminant of this equation is  Δ = 0. Hence, the theorem 

stated. 

 

Note there are thus two degrees of freedom on the choices of 𝛼 and c to build a homographic sequence converging 

toward 𝛼 and such that the homographic function of recurrence admits as 𝛼 single fixed point as desired. 

Corollary 2. There are infinitely many homographic (𝑈𝑛)𝑛∈ℕ sequences that converge to 𝛼. We have now a method 

to build on a convergent homographic suite toward 𝛼 two degrees of freedom.  

 

Example 4. Let two reals 𝛼  = 1 and c = 2. The homographic sequence generated by ℎ𝛼𝑐  is defined b : 

{
𝑈0 ≠ 1

 𝑈𝑛+1 = ℎ𝛼𝑐(𝑈𝑛)
    as   

{
 
 

 
 

 

𝛼 = 1
𝑐 = 2
𝑏   = −2
𝑎 = 8
𝑑 = 4.

 

So,      {
𝑈0 ≠ 1

∀𝑛 ∈ ℕ,𝑈𝑛+1 = ℎ𝛼𝑐(𝑈𝑛) =
4𝑈𝑛−1

𝑈𝑛+2
.
 

It is easy to verify that this homographic sequence converges to 1 as desired. 

 

4.4. A complex or real homography h two fixed points 

Theorem 3. For two  real 𝛼 and 𝛽 fixed, there is an infinity of noted homographies, ℎ𝛼𝛽, having and as the only 

fixed point defined by : 

ℎ𝛼𝛽 ∶  𝑧 ↦
𝑎𝑧+𝑏

𝑐𝑧+𝑑
  as  {

𝑏 = −(𝛼𝛽)𝑐

    𝑎 = 2(𝛼 + 𝛽)𝑐

 𝑑 = (𝛼 + 𝛽)𝑐

       ∀ (𝛼, 𝑐, 𝛽) ∈ (ℝ∗)3. 

Proof  

Let ℎ𝛼𝛽  be a homography defined by: ℎ𝛼𝛽(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
. We have an expression:  ℎ𝛼𝛽𝑐(𝑧) =

2(𝛼+𝛽)−(𝛼𝛽)

𝑧+(𝛼+𝛽)
. Thus, 

ℎ𝛼𝛽(𝑧) = 𝑧 is equivalent to 2(𝛼 + 𝛽)𝑐𝑧 − (𝛼𝛽)𝑐 = 𝑐𝑧2 + (𝛼 + 𝛽)𝑐𝑧 .  So, in replacing z by 𝛼  we have: 2(𝛼 +
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𝛽)𝑐𝛼 − (𝛼𝛽)𝑐 = 𝑐𝛼2 + (𝛼 + 𝛽)𝑐𝛼  and we have: 2𝛼2𝑐 + 𝛼𝑐𝛽 = 2𝛼2𝑐 + 𝛼𝑐𝛽  and in replacing z by 𝛽  we have 

2𝛼2𝑐 + 𝛼𝑐𝛽 = 2𝛼2𝑐 + 𝛼𝑐𝛽 . So,  𝛼  and  𝛽  are two solutions of the equation ℎ𝛼𝛽(𝑧) = 𝑧 . Hence, the is stated 

theorem. 

 

Corollary 3. There are infinitely many homographic (𝑈𝑛)𝑛∈ℕ sequences such as homographies corresponding to 

two fixed points previously given 𝛼 and  𝛽 .  As for the first case above, we have a safe technique to build a 

homographic sequence with two fixed points 𝛼 and  𝛽 this time having three degrees of freedom with the choice of 

𝛼,  𝛽 and c. 

 

Example 5. Let three reals 𝛼 = -1, 𝛽 = 2 and c = -3. The homographic sequence generated by  

 

ℎ𝛼𝑐 is defined by : {
𝑈0 ≠ {−1 ; − 2}

 𝑈𝑛+1 = ℎ𝛼𝑐(𝑈𝑛)
    as   

{
 
 

 
 

 

𝛼   = −1
𝛽 = 2

𝑐    = −3
𝑏   = −6
𝑎   = −6
𝑑    = −3.

 

So, {
𝑈0 ≠ {−1 ; − 2}

∀𝑛 ∈ ℕ, 𝑈𝑛+1 = ℎ𝛼𝑐(𝑈𝑛) =
2𝑈𝑛+2

𝑈𝑛+1

 is a homographic sequence whose corresponding homography has two fixed 

points -1 and 2. 

V.  CONCLUSION AND PERSPECTIVES 

In a word, it is possible to construct various problems based on a homographic sequence at will depending on 

whether one can control or reinforce the acquisition of arithmetic sequences or geometrics with regard to the 

properties of the fixed points of a homography to study geometric and arithmetic sequences in 11th Grade and in 12th 

Grade. In terms of learning homographic functions and homographic recurrent sequences in the scientific terminal, 

we have seen that the school curriculum does not feel the slightest consideration, said homography. Moreover, 

thanks to the resolution of the inverse problems of homography, we have shown the existence of an infinity of 

homography at a single given fixed point or at two given fixed points. This allows any teacher to effectively develop 

his own limit homographic sequences previously fixed at will, and this, in an infinity of ways by having two or three 

degrees of freedom. Finally, would it not be appropriate to launch the introduction of these methods through 

studying of convergence of a recurring homographic sequence that is very realizable on mathematics schooling to 

introduce at the high school level, as reinforcement? 
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